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a  b  s  t  r  a  c  t

An  analysis  of  several  methods  of extraction  of fractal  parameters  from  the  simulated,  artificial  surfaces
and  AFM  images  of  the  real,  polycrystalline  diamond  films  is  presented  in the  paper.  The methods  involve
the  cube  count  method,  the  roughness  method,  the  autocorrelation  function  method,  and  the  structure
function  method.  By comparing  the  four  methods,  the  roughness  method  is  found  to be  superior  for
its high  numerical  accuracy,  whereas  the  cube  count  method  appears  to be  inferior  in that  aspect.  The
changes  in  the  fractal  dimension  and  the  anisotropy  ratio values  observed  over  deposition  time  are  also
shown  and  discussed  in the  paper.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Precise description and control of 3D surface topography
is of prime importance in engineering applications as it has
strong influence on such materials properties as: fracture tough-
ness, wear resistance, lubrication and others. Currently, surface
characterization basically relies on a large series of statistical
parameters derived using various methods, among which atomic
force microscopy (AFM) now became one of the most popular. Since
its discovery, AFM significantly evolved toward characterization of
surface topography of solids of all types down to the nanoscale
level, and nowadays this non-destructive method provides topo-
graphical information probed over an area from several square
nanometers up to thousands of square micrometers. Moreover,
this method can discriminate among a large diversity of interac-
tions occurring between the surface and the scanning tip (electrical,
magnetic, adhesive, friction, etc.)

Surface topography can be characterized using an excessive
number of statistical parameters depicting various aspects of the
surface lay, roughness, waviness and the form. Unfortunately, many
of them strongly depend on how they are actually measured,
including for instance the sampling and the scan lengths, and
the instrumental resolution. In order to overcome this problem,
description of engineering surfaces in terms of fractal geometry
was suggested [1]. Fractals are virtual, self-similar geometrical
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objects that appear identical independent of the scale of magni-
fication. Such objects are characterized by the fractal dimension
D [1]. However, due to some physical confinements (finite instru-
mental resolution, finite observation time), fractal properties of
objects of natural origin are often reduced to a limited range of
scale lengths. Such objects (called self-affine) need to be described
by three parameters: fractal dimension D, corner frequency fc, and
the topothesy �,  and differ from perfect fractals described by the
fractal dimension D solely.

Fractal dimension is found to be correlated with surface
roughness parameters [2–5], it is related to various material
properties [6], and even to mechanisms leading to surface for-
mation [7]. On the other hand, several experimental methods
have been proposed for estimation of fractal dimension, including
for example: AFM, Scanning Electron Microscopy [8], diffuse
X-ray reflectometry [8], adsorption measurements, electrochem-
ical impedance spectroscopy and others, which usually hardly
converged into a consistent picture. What is worse, a little is
known about possible influence of each numerical procedure on
final results. In previous work we  have compared the effect of
the AFM tip geometry and the scan mode on results of a fractal
analysis of well-established surfaces (calibration gratings) [4].
In this study we report the systematic comparison of different
numerical procedures used to estimate the fractal dimension
from the same AFM images recorded from the crystal surface
that evolves with elapsed time. Such an attempt should exhibit
numerical peculiarities allowing the quantitative assessment of
processing procedures, which might be especially useful in fulfill-
ing lacking knowledge about their accuracy, precision and terms of
applicability.

0169-4332/$ – see front matter ©  2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.apsusc.2013.12.132



Author's personal copy

S. Kulesza, M. Bramowicz / Applied Surface Science 293 (2014) 196– 201 197

The selection of thin diamond films grown by microwave plasma
was motivated by several reasons. First, the deposition process
significantly affects the crystal morphology that starts from a
bare substrate surface with tiny nuclei, and evolves into a closed
although polycrystalline film with increasing roughness, which
is expected to influence the fractal properties. In addition, a lit-
tle is known about fractal properties of diamonds itself. Salvadori
et al. [9] reported D value close to 2.5 for plasma-deposited dia-
mond films on silicon substrates, whereas Silva et al. [10] obtained
lower D equal to 2.2 for boron-doped diamond films grown by
the hot-filament CVD method. Recently, Tsysar [11] found fractal
dimension equal to 2.36, and 2.73 for [111]- and [011]-oriented
diamond grains in HF-CVD films, respectively. Finally, a modeliza-
tion of the topography evolution in terms of fractal parameters
might shed some light onto the kinetics of the growth pro-
cess, including the early stages of the nucleation phenomena,
and subsequent diffusion of contaminants and defects along grain
boundaries.

2. Materials and methods

Diamond films were deposited on 1 mm thick substrates made
of fused quartz. Pre-treatment procedure involved mechanical
seeding with 250 nm diamond powder on a vibrating plate. The
growth process was carried out in a microwave plasma CVD reac-
tor (ASTeX AX 6560) described in details elsewhere [12]. Gas
mixture contained methane largely diluted with molecular hydro-
gen (CH4/(CH4 + H2) = 5% (vol.)) Other deposition parameters were
as follows: substrate temperature 500 ◦C, gas pressure 6650 Pa
(50 Torr), microwave power 3000 W,  and deposition time varying
from 5 min  up to 5 h.

AFM measurements were carried out at ambient conditions
using Multimode 8 instrument with Nanoscope V controller
(Bruker). The tip (SNL-10 (Bruker)) with the radius 2 nm scanned
across the surface in a contact mode. To determine the fractal prop-
erties, square AFM images with the lateral resolution of 512 points
and scan lengths from 1 up to 150 �m were taken. The images were
then flattened to remove line tilt and image bow prior to further
numerical processing.

3. Evaluation of the fractal dimension

3.1. The cube counting method

An evaluation of the fractal dimension by counting the cubes
directly explores the definition of a box-count dimension. The algo-
rithm iteratively halves an initial cubic cell with the edge length L
equal to the scan length into smaller cubes, and counts N(L) – the
number of all cubes that contain at least one sample of a 3D topogra-
phy. The process continues until L approaches the image resolution,
i.e. the distance between two adjacent samples [13]. Since:

N(L) ∝ L−D (1)

the slope of a log–log plot of N(L) versus L gives the fractal dimen-
sion referred to as the cube count fractal dimension DCC.

3.2. The roughness method

The fractal dimension can be also estimated using the root-
mean-squared value of the surface height variance Sq defined as
[14,15]:

Sq =

√√√√ 1
NxNy

Nx−1∑
i=0

Ny−1∑
j=0

(z(i, j) − 〈z〉)2 (2)

where <· · ·> – denotes mean value, Nx, Ny – is the number of sam-
ples along rows and columns in the AFM image, while z(i,j) is the
measured height in pixel (i,j) of an image. Assuming that the rough-
ness Sq measured over surfaces with different edge lengths L scales
as:

Sq ∝ L3−D (3)

the fractal dimension DRMS can be computed from the slope of a
least-square regression line fit in a log–log plot of Sq vs. L [16].

3.3. The structure function method

The surface topography recorded in the form of discrete height
samples z(i,j) in an AFM image allows us to compute the three-
dimensional structure function (SF) defined as:

S(�x, �y) =
〈

(z(x, y) − z(x + �x, y + �y))2〉 ;

�x = Lx

Nx
(0,  1. . .Nx − 1),  �y = Ly

Ny
(0,  1. . .Ny − 1)

(4)

where <· · ·> – denotes the spatial average, Nx, Ny – are the numbers
of samples along scan axes, Lx, Ly – scan lengths, whereas (�x, �y) –
the discrete spatial lag along scan axes between an original image
and its delayed copy. Any profile of the structure function derived
from the image is assumed to obey the approximate scaling-law
behavior:

S(�) = ��2(2−D) (5)

where D – is the profile fractal dimension, while � – is the
topothesy. According to Wu [17], the topothesy can be expressed
explicitly as:

� = �G2(D−1)

2� (5 − 2D) sin[�(2 − D)]
(6)

where G – is a scale constant with the dimension of reciprocal
length, D – is the profile fractal dimension (1 < D < 2), and � – is
the Euler function.

Note that any section through the structure function at an arbi-
trary angle around the origin would be equivalent to an ensemble
average of profile structure functions measured at the angle ��

with respect to the x-axis:

�� = tan−1
(

�y

�x

)
(7)

The profile fractal dimension D is then calculated from the least-
square regression line in a log–log plot of the profile structure
function versus separation lag for each �� angle, and the surface
fractal dimension DSF is computed according to:

DSF = 〈D〉 + 1 (8)

where <· · ·> denotes tangentially averaged mean fractal dimension.
Likewise, the topothesy � can be determined from the intercept of
the above plot with the y-axis.

3.4. The autocorrelation function method

According to Nayak [18], any surface represents a real random
process with the spatial variation described by the autocorrelation
function (ACF). Assuming stationarity and ergodicity, the ACF can be
computed through spatial averaging over a limited number of AFM
samples. The stationarity condition requires that both the auto-
correlation function and the mean value are independent of the
position, whereas the ergodicity requires the mean to converge to
a constant value with increasing sampling period. Even surfaces
with apparent curvature and waveform (i.e. non-stationary) can be
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Table  1
Comparative data on the estimation of fractal parameters from artificial surfaces generated using the equation proposed by Yan and Komvopoulos [20]. The first two columns
contain  the fractal dimension D, and the fractal roughness G used to simulate the surface, while the others provide the surface roughness Sq, the fractal dimension values
estimated using the methods described in the text: the structure function (DSF), the autocorrelation function (DACF), the cube count method (DCC), and the roughness method
(DRMS), and the anisotropy ratio Str.

D G [m]  Sq [m]  DSF DACF DCC DRMS Str

Surf 1 2.25 2 × 10−13 74.4 × 10−9 2.31 ± 0.04 2.42 ± 0.04 2.22 ± 0.09 2.24 ± 0.03 0.88
Surf  2 2.50 1.1 × 10−9 2.52 ± 0.05 2.55 ± 0.01 2.34 ± 0.11 2.49 ± 0.04 0.46
Surf  3 2.75 1.75 × 10−12 2.74 ± 0.08 2.72 ± 0.01 2.47 ± 0.08 2.73 ± 0.06 0.85

treated in this manner providing that the AFM image is previously
flattened. The autocorrelation function is defined as:

R(�x, �y) = 1
�2

〈
(z(x, y) − 〈z〉) · (z(x + �x, y + �y) − 〈z〉)

〉
,

�x = Lx

Nx
(0, 1. . .Nx − 1),  �y = Ly

Ny
(0,  1. . .Ny − 1)

(9)

where <· · ·> – denotes the mean value, � – is the root-mean-square
surface roughness (normalizing term), Nx, Ny – the numbers of sam-
ples along scan axes, (�x, �y) – the discrete spatial lag along scan
axes, Lx, Ly – the scan lengths.

The ACF exhibits several useful properties: it is a real, symmetric
function with the maximum value at the origin (zero lag), follows
the periodicity of the surface, asymptotically decays toward zero
with increasing spatial lag, and can be computed using very effi-
cient FFT algorithms. Apart from that, the ACF gives insight into
the surface anisotropy using the ACF decay lengths along various
orientations. For isotropic surfaces, the decay lengths are equal in
all directions, whereas for anisotropic surfaces the decay is faster
across the lay orientation (a1 direction) than along it (a2 direction).
Hence, the normalized anisotropy ratio Str is defined as [14]:

0 < Str = �a1

�a2

∣∣R = 1 → 0, 2 ≤ 1 (10)

where �a1, and �a2 – are the smallest and the largest decay lengths,
respectively. For Str > 0.5 the surface is said to be isotropic, while
for Str < 0.3 the surface is said to be strongly anisotropic [1].

Assuming that the ACF is Gaussian, and the surface is stationary,
there is a straightforward relation between autocorrelation and the
structure function [19]:

S(�x, �y) = 2(R(0) − R(�x, �y)) (11)

Having the SF derived from the ACF and calculated for various �
directions, it is possible to determine the fractal dimension and the
topothesy according to the method described in Section 3.3. The
fractal dimension obtained in that way is referred to as DACF.

3.5. Comparison of the estimation methods

In order to assess how the numerical accuracy of the discussed
methods affects calculated fractal parameters, a set of artificial sur-
faces has been generated numerically using the equation proposed
by Yan and Komvopoulos [20]:

z(x, y) = L
(

G

L

)D−2( ln �

M

)1/2 M∑
m=1

nmax∑
n=0

� (D−3)n

{
cos(˚mn) − cos

[
2��n(x2 + y2)

1/2

L
· cos

(
tan−1

(
y

x

)
− �m

M

)
+ ˚mn

]}
(12)

The surfaces were simulated with the following parameters:
fractal dimensions D equal to 2.25, 2.5, and 2.75, fractal rough-
ness G = 0.2 pm,  the density of frequencies in the profile � = 1.5,
the number of superposed ridges M = 10, the cut-off length (of the
order of around six lattice distances) LS = 2 nm,  and homogeneously
distributed random phase shift. Simulated surfaces turn out to be
relatively flat, with the roughness equal to 74.4 nm, 1.1 nm,  and
1.75 pm corresponding to the fractal dimension 2.25, 2.5, and 2.75
respectively.

Having these artificial rough surfaces, the fractal dimension
was then back-computed, and obtained results are summarized in
Table 1. Taking into account the numerical accuracy, the roughness
method is found to be superior. Indeed, the DRMS values always hold
to the reference ones within the error limit, and the largest relative
error does not exceed 3 per cent. The SF method is found to be less
accurate, as it is not consistent with the lowest D value within an
error limit, and because its largest relative error approaches 4.5 per
cent. As expected, the ACF method is found less accurate than SF
method, especially for lower D values, due to the maximum rel-
ative error being as high as 9 per cent. Additionally, the analysis
of the surface anisotropy points at distinctive peculiarity of the Str

value for the surface with D = 2.5, which is specific of anisotropic
surfaces. As noted by Yan and Komvopoulos [20], such an artifact
is an intrinsic property of the algorithm due to possible unmatch-
ness of opposing boundaries of the simulated surface, and does not
necessarily mean that the ACF method is inappropriate. Finally, the
cube count method turns out to be the most inaccurate among the
others since it yields the highest relative error equal to 14 per cent.
Note, however, that in this case the relative error increases with
increasing D value, which might suggest that this method is highly
sensitive to fractal dimension.

4. Results and discussion

Fig. 1 shows a series of AFM images of a diamond film on
quartz substrate at various stages of the deposition process that
exhibits significant changes in its topography: Fig. 1A presents ini-
tial state, that is flat quartz surface with numerous scratches, Fig. 1B,
and Fig. 1C display poor-faceted, minute diamond grains, while
Fig. 1D–F present closed diamond layers comprised of well-faceted
diamond crystals. Initial seed concentration left after the mechan-
ical pre-treatment is about 2 × 108 cm−2, and is the same as the
nucleation density seen after 5 min  of the deposition process. After
that, however, the grain density steadily decreases due to increas-
ing competitive crystal growth (average grain diameter raises from
about 250 nm up to 1000 nm), approaching finally 0.8 × 108 cm−2.
Another important issue is the grain alignment. As seen in Fig. 1B,
shapeless diamond nuclei appear mostly around scratches, and
this gives rise to high surface anisotropicity. With elapsed depo-
sition time, however, random-oriented diamond grains with sharp
edges cover the whole surface diminishing anisotropicity of the film

(Fig. 1C–E). Surprisingly, competitive diamond growth for 300 min
(Fig. 1F) ends up in the linear alignment of the uppermost crystal
edges.

Fig. 2 presents the plot of the film thickness (closed circles), and
the surface roughness (open circles) against the deposition time.
From the beginning, diamond crystals can grow up freely until
coalescence occurs somewhere between 5 and 15 min. From that
moment crystals grow up competitively since there is no empty



Author's personal copy

S. Kulesza, M. Bramowicz / Applied Surface Science 293 (2014) 196– 201 199

Fig. 1. AFM images (10 �m × 10 �m)  of a diamond film on quartz substrate at various stages of the deposition process: (A) quartz substrate after mechanical seeding and
(B)–(F)  steadily developing diamond film.

space left between them. On the other hand, time-dependent
changes in the root-mean-square surface roughness measured over
an area of 10 × 10 �m2, increases from 1.3 nm (quartz substrate)
and asymptotically raises within two orders of magnitude up to
133 nm after 5 h of the deposition process.

Fig. 3A presents time-dependent changes in the fractal dimen-
sion calculated using the four methods described in Section 3: the
cube count method (DCC), the roughness method (DRMS), the struc-
ture function method (DSF), and the autocorrelation function (DACF).
Note that obtained results follow the same path, namely that in the
first 30 min  the fractal dimension increases, and then it asymp-
totically falls down approaching a constant value. Unfortunately,
each method yields different fractal dimension. Based on the results
obtained from the artificial rough surfaces, the DRMS value was  cho-
sen as the reference. As can be seen from Fig. 3A, the roughness
method yields generally higher results than the other methods.
More specifically, the DACF value initially differs less than 1 per cent
with respect to the reference, but with increasing deposition time

Fig. 2. Temporal changes in the film thickness (closed circles), and the surface
roughness (open circles) of the diamond film as a function of the deposition time.

the discrepancy steadily increases up to 10 per cent. On the con-
trary, the DACF turns out to be systematically underestimated from
9 up to 20 per cent with respect to the reference. Similar behav-
ior is observed for the DCC, which is at least 11 and not more than
17 per cent less than the DRMS value. In addition, changes in DCC
are relatively small, which agrees well with low sensitivity of this
method observed for the simulated surface.

In order to verify, how the fractal dimension depends on the
scan length, Fig. 3B shows a semi-log plot of DCC and DSF val-
ues versus the scan lengths from 1 �m up to 150 �m recorded
for the quartz substrate. Both plots behave in a similar manner,
that is they follow non-monotonic trend on scan size with clearly
visible cross-over. It might be due to possible transition between
different roughness components (roughness, waviness, form) with
different scaling exponents, which is also seen in Fig. 1C–F. Unlike
large number of grown surfaces, these images cannot be trans-
formed into each other by similarity, that is, by changing the
zoom. As a result, changing the size of an object (crystal grains)
with constant scale of observation, should influence the fractal
dimension. Apart from that, however, the crystal structure may
be also important – flat single-crystal facets in diamond grains
exhibit significantly lower fractal dimension than rough polycrys-
talline material. Another explanation involves the fingerprint of
multifractal behavior specific of surfaces formed by different for-
mation mechanisms. It is also possible that the methods cannot
distinguish between local regions with different fractal dimensions
and non-fractal ones, because each of them averages the topog-
raphy to a certain degree. Unfortunately, the above explanations
remain speculative, and the issue needs to be addressed in fur-
ther studies (by comparison with artificially generated surfaces, for
example).

For better clarity, results from Fig. 3A are re-plotted in Fig. 4
using the DRMS values as the reference (x-axis). Dotted straight
line with the slope equal to 1 helps to compare the results, and
to verify, how each numerical procedure copes with the same data.
As mentioned previously, each method generally underestimates
the fractal dimension with respect to DRMS. However, the rough-
ness method requires at least several AFM scans with various scan
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Fig. 3. (A) Changes in the fractal dimension of the diamond film during the deposition process calculated with the methods discussed in the paper: the cube count method
(DCC), the autocorrelation function method (DACF), the roughness method (DRMS), and the structure function method (DSF). (B) Fractal dimension determined using the cube
count  method and the structure function method for the quartz substrate with increasing scan length.

lengths to calculate the fractal dimension, which may  be difficult to
implement, especially on rough samples with extreme changes in
vertical topography. Another issue is that the roughness is insensi-
tive to directional properties of the surface, and hence it assumes
the perfect isotropicity of the surface.

The SF method also exhibits reasonable numerical accuracy in
deriving fractal parameters from AFM measurements. The main
advantage of the structure function follows from its numerical sta-
bility, and independence of the mean plane, which implies that the
singularities are not created at the origin. What is also important,
this method estimates the fractal dimension as an average over the
polar angle, giving rise to its low sensitivity to surface anisotropy.
Apart from that, however, the structure function suffers from seri-
ous drawbacks. This function is known to be reliable up to only one
tenth of the image size, and thereafter it starts to fluctuate due to
digital limitations. In addition, algorithm of the SF can be hardly
optimized with respect to that of the ACF. Also, the structure func-
tion is produced by subtraction of a given image and its lagged
copy, but it is commonly known that the more nearly equal two
numbers are, the more precision is lost in the subtraction. What is
worse, obtained results are then raised to the power of 2, and the
fractal parameters are estimated using the SF values around the
origin (i.e. those with the largest error), which may  even decrease
the accuracy of the method.

Fig. 4. Comparison of the fractal dimensions DACF, DRMS, and DSF to the DCC value
taken as a reference. Straight line with the slope equal to 1 is shown for convenience.

On the contrary, computation of the autocorrelation function
is very fast and numerically efficient since it can be implemented
using the Fast Fourier Transform algorithms. Therefore, in its sim-
plest form that involves a single AFM measurement, this method
may  serve either as a rapid surface characterization tool or as an
on-site process monitoring tool even if its numerical accuracy is
lower than that of the SF. However, some difficulties might arise
due to ACF dependence on the mean value (and hence on the pro-
cedures of the flattening of AFM images), and possible presence of
singularities at the origin. Another problem arises that simplistic
assumption about the Gaussian distribution of the surface heights
used to re-compute the ACF into the SF and further into fractal
parameters might not hold in case of anisotropic surfaces. The ACF
is highly sensitive to anisotropy, and the same concerns to the
SF derived indirectly from it, which means that obtained fractal
dimensions can be substantially different in directions parallel and
perpendicular to the surface lay. This effect might not be necessar-
ily compensated by the averaging procedure leaving the final DACF
value largely underestimated.

The cube count method is found to be the poorest among those
studied. It is hardly sensitive to fractal dimension, and significantly
deviates from the reference. Hence, this method is not suggested
for an accurate fractal analysis.

Fig. 5 casts some light into directional properties of the diamond
surface presenting a plot of the anisotropy ratio calculated from the

Fig. 5. Time-dependent plot of the anisotropy ratio of the growing diamond film
measured from the decay lengths of the autocorrelation function.
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decay of the autocorrelation function according to Eq. (10) versus
deposition time. The surface appears to be highly anisotropic at
early growth stage (Str ≤ 0.2), but then it turns into isotropic one
(Str ≥ 0.6). The ratio achieves the maximum value equal to 0.89 after
2 h of the deposition process. Afterwards, it gradually falls down to
0.63.

5. Conclusions

Obtained results clearly show the supremacy of the roughness
method over the others studied in the paper. The autocorrelation
method turned out to be slightly less accurate, but its low computa-
tional costs, numerical discrepancy below 9 per cent, and sensitivity
to anisotropic properties of the surface make this method prefer-
able in rapid characterization of the materials with the use of the
AFM measurements. Unfortunately, they all use certain averaging
procedures to compute the fractal parameters, and hence, they can-
not distinguish local regions with different fractal dimensions as
well as non-fractal regimes. As a result, obtained fractal parame-
ters are found to be dependent on the scan size, and critical grain
size.

Apart from that, the fractal analysis together with the anisotropy
analysis reveals some information about the kinetics of the deposi-
tion process. In the beginning, the fractal dimension raises until the
crystal grains remain separated by empty spaces from each other,
but once they meet to form the closed layer, the fractal dimension
gradually falls down. The anisotropy ratio exhibits similar behavior
concerning the morphological change from anisotropic surface into
isotropic one, although both quantities are rather poorly correlated.

References

[1] E. Mainsah, J.A. Greenwood, D.G. Chetwynd (Eds.), Metrology and Proper-
ties of Engineering Surfaces, Kluwer Academic Publishers Inc., Norwell, MA,
2001.

[2] J. Burger, G. Dietler, M.  Binggeli, R. Christoph, O. Marti, Aspects of the surface
roughness of ceramic bonding tools on a nanometer scale investigated with
atomic force microscopy, Thin Solid Films 253 (1994) 308–310.

[3] P. Pfeifer, Fractal dimension as working tool for surface-roughness problems,
Appl. Surf. Sci. 18 (1984) 146–164.

[4] M. Bramowicz, S. Kulesza, K. Rychlik, A comparison between contact and tapp-
ing AFM modes in surface morphology studies, Tech. Sci. 15 (2012) 307–318.

[5] D. Risovic, S. Mahovic, M.  Gojo, On correlation between fractal dimension and
profilometric parameters in characterization of surface topographies, Appl.
Surf. Sci. 255 (2009) 4283–4288.

[6] X. Liang, B. Lin, X. Han, S. Chen, Fractal analysis of engineering ceramics ground
state, Appl. Surf. Sci. 258 (2012) 6406–6415.

[7] D. Risovic, B. Gasparovic, B. Cosovic, Hydrodynamic influence on the fractal
morphology of the linoleic acid adsorbed layer at the mercury/electrolyte inter-
face, Colloid Surf. A 223 (2003) 145–156.

[8] J.C. Arnault, A. Knoll, E. Smigiel, A. Cornet, Roughness fractal approach of oxi-
dized surfaces by AFM and diffuse X-ray reflectometry measurements, Appl.
Surf. Sci. 171 (2001) 189–196.

[9] M.C. Salvadori, M.G. Silveira, M.  Cattani, Measurement of critical exponents
of  diamond films by atomic force microscopy imaging, Phys. Rev. E 58 (1998)
6814–6816.

[10] L.L.G. Silva, N.G. Ferreira, M.E.R. Dotto, M.U. Kleinke, The fractal dimension of
boron-doped diamond films, Appl. Surf. Sci. 181 (2001) 327–330.

[11] M.A. Tsysar, Studies of topological features of the HFCVD surface of a nanocrys-
talline diamond film using a scanning tunneling microscope with a diamond
tip,  J. Superhard Mater. 34 (2012) 256–263.

[12] S. Kulesza, Study of the moderate-temperature growth process of optical qual-
ity synthetic diamond films on quartz substrates, Thin Solid Films 516 (2008)
4915–4920.

[13] H.O. Peitgen, H. Jurgens, D. Saupe, Saupe, Chaos and Fractals: New Frontiers of
Science, Springer, Berlin, 1992.

[14] K.J. Stout, J.P. Sullivan, W.P. Dong, E. Mainsah, N Luo, T. Mathia, H.  Zahouanithe,
The  development of methods for the characterization of roughness in three
dimensions, Publication no. EUR15178EN of the Commission of the Euro-
pean Communities Dissemination of Scientific and Technical Knowledge Unit
Directorate General Information Technologies and Industries and Telecommu-
nications Luxembourg, 1993.

[15] ISO 4287:1997. Geometrical product specifications (GPS)—surface texture: pro-
file  method—terms, definitions and surface texture parameters.

[16] J. Krim, I. Heyvaert, C. Van Haesendonck, Y. Bruynseraede, Scanning tunneling
microscopy observation of self-affine fractal roughness in ion-bombarded film
surfaces, Phys. Rev. Lett. 70 (1993) 57–60.

[17] H.J. Wu,  Analyses and simulation of anisotropic fractal surfaces, Chaos Solitons
Fractals 13 (2002) 1791–1806.

[18] P.R. Nayak, Random process model of rough surfaces, J. Lubrication Technol. 93
(1971) 398–407.

[19] R.S. Sayles, T.R. Thomas, Spatial representation of surface roughness by means
of  structure function—practical alternative to correlation, Wear 42 (1977)
263–276.

[20] W.  Yan, K. Komvopoulos, Contact analysis of elastic-plastic fractal surfaces, J.
Appl. Phys. 84 (1998) 3617–3624.


