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Introduction

Consider data that have continuous as well as nominal fe-
atures. Any additional structures are defined on the data.
So, we use the Euclidean metric on continuous and the
Hamming metric on nominal part of data.

The entire dataset is divided into classes. The main as-
sumption is that each feature has different impact to the
structure of classes. To model it, let’s introduce appropria-
te multipliers in metric definition.

The problem is to define unknown multipliers. This is do-
ne by minimizing the total intra-class squared distance.
Experiments show that using of the discovered weighted
metric improves the standard KNN classification.

Data
The following data are considered:

X = {X1, . . . ,XM }.
Each record consists of two parts

Xi = (Xi, Yi),

where Xi = (x1i , . . . , x
n
i ) ∈ Rn are the

continuous data, and Yi = (y1i , . . . , y
m
i )

are the nominal data, i = 1, . . . ,M .
Assume that X is divided into c classes,

X = C1 ∪ · · · ∪ Cc,

where c < M . This classes will be used
for learning. The determined weights are
used for classification of new records.

Metric
The Hamming metric on the set of nominal data is defined as follows:

disth(Y1, Y2) =
1

m

∣∣∣{ β = 1, . . . ,m | yβ1 ̸= yβ2 }
∣∣∣ = 1

m

m∑
β=1

diff(yβ1 , y
β
2 ),

where diff(t1, t2) =

{
1 if t1 ̸= t2,

0 if t1 = t2.
Introduce the weights vector:W = (W,U) = (w1, . . . , wn, u1, . . . um), where
wα > 0, uβ > 0 for α = 1, . . . , n, β = 1, . . . ,m, and assume that classes are
formed with respect to the weighted distance:

dist2W(X1,X2) = dist2W,e(X1, X2) + dist2U,h(Y1, Y2)

=

n∑
α=1

w2
α(x

α
1 − xα2 )

2 +

 m∑
β=1

uβ diff(y
β
1 , y

β
2 )

2

.

Total intra-class squared

distance
To determine the weights vector W we minimize
the total intra-class squared distance:

H(W) =
1

M 2

c∑
k=1

 ∑
Xi,Xj∈Ck

dist2W(Xi,Xj)

 .

The objective function H(W) is homogeneous
with respect to W. So, to workout an effective
minimizing procedure, we assume that the gene-
ralized average of the weights is constant: 1

n +m

 n∑
α=1

wr
α +

m∑
β=1

urβ

1
r

= 1, r ∈ (0, 1).

Determining the weights
To solve constrained minimizing problem the method of Lagrange multipliers was used.
The solution is as follows.
Continuous weights:

wα = Λrsα, (1)

where

sα =

 1

M 2

c∑
k=1

∑
i,j∈Ck

(
xiα − xjα

)2− 1
2−r

. (2)

Nominal weights:
uβ = Λrzβ, (3)

where zβ satisfies the following equation

zr−1
β =

m∑
γ=1

Aβγzγ, (4)

for matrix A defined as

Aβγ =
1

M 2

c∑
k=1

∑
i,j∈Ck

diff(yiβ, y
j
β) diff(y

i
γ, y

j
γ). (5)

Multiplier Λr:

Λr =

(∑n
α=1 s

r
α +

∑m
β=1 z

r
β

n +m

)−1
r

(6)

Algorithm
To solve (4), a relaxation iterative method is applied:

zβ,next = zβ − τ

zr−1
β −

m∑
γ=1

Aβγzγ

 . (7)

Algorithm 1. Determining of the metric weights

Require: X = {X1, . . . ,XM } is the set of records, C1, . . . , Cc — the set of classes
Ensure: W = (W,U) is the optimal weights vector
Compute sα, α = 1, . . . , n with (2)
Compute matrix A with (5)
Choose initial z vector as z = (1, . . . , 1)
while ∥znext − z∥ > ε do
Compute znext with (7)

end while
Compute Λr with (6)
Compute wα with (1) for α = 1, . . . , n
Compute uβ with (3) for β = 1, . . . ,m
return (W,U)

Numerical experiments

Australian Credit Approval dataset

Algorithm AUC H(r)

Weighted KNN, r = 0.05 0.942 166.53
Weighted KNN, r = 0.15 0.942 103.93
Weighted KNN, r = 0.35 0.938 52.12
Weighted KNN, r = 0.55 0.947 31.98
Weighted KNN, r = 0.75 0.947 21.15
Weighted KNN, r = 0.95 0.942 13.66
Unweighted KNN, normalized data 0.925
Random forest 0.949
Support Vector Machine 0.941

Heart Disease data set

Algorithm AUC H(r)

Weighted KNN, r = 0.05 0.966 67.56
Weighted KNN, r = 0.15 0.969 54.62
Weighted KNN, r = 0.35 0.966 36.41
Weighted KNN, r = 0.55 0.974 25.68
Weighted KNN, r = 0.75 0.979 19.21
Weighted KNN, r = 0.95 0.946 14.55
Unweighted KNN, normalized data 0.953
Random forest 0.941
Support Vector Machine 0.966

Artificial data set

Algorithm AUC H(r)

Weighted KNN, r = 0.05 0.997 10213.74
Weighted KNN, r = 0.15 0.997 1043.18
Weighted KNN, r = 0.35 0.997 127.58
Weighted KNN, r = 0.55 0.996 49.96
Weighted KNN, r = 0.75 0.995 26.68
Weighted KNN, r = 0.95 0.995 13.96
Unweighted KNN, normalized data 0.990
Random forest 0.999
Support Vector Machine, normalized data 0.990

Conclusion
The proposed method is an interesting proposition for the
classification problem. Moreover it could get further impro-
vement. Specifically, we plan to consider alternatives to the
standard Hamming metric for the nominal part.
Besides, the discovered metric can be used in other algori-
thms for analysis of nominal-continuous data that are based
on similarity.

Further information
Analogous technique was used in case of non-supervised
learning in [1].
The source code for experiment can be found at https:
//gitlab.com/adenisiuk/weightedhamming.
This poster is available for download at http://wmii.

uwm.edu.pl/~denisjuk/posters/praha2023.pdf
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